An Ecosystem-Based Approach to Assess the Status of a Mediterranean Ecosystem, the Posidonia oceanica Seagrass Meadow
نویسندگان
چکیده
Biotic indices, which reflect the quality of the environment, are widely used in the marine realm. Sometimes, key species or ecosystem engineers are selected for this purpose. This is the case of the Mediterranean seagrass Posidonia oceanica, widely used as a biological quality element in the context of the European Union Water Framework Directive (WFD). The good quality of a water body and the apparent health of a species, whether or not an ecosystem engineer such as P. oceanica, is not always indicative of the good structure and functioning of the whole ecosystem. A key point of the recent Marine Strategy Framework Directive (MSFD) is the ecosystem-based approach. Here, on the basis of a simplified conceptual model of the P. oceanica ecosystem, we have proposed an ecosystem-based index of the quality of its functioning, compliant with the MSFD requirements. This index (EBQI) is based upon a set of representative functional compartments, the weighting of these compartments and the assessment of the quality of each compartment by comparison of a supposed baseline. The index well discriminated 17 sites in the north-western Mediterranean (French Riviera, Provence, Corsica, Catalonia and Balearic Islands) covering a wide range of human pressure levels. The strong points of the EBQI are that it is easy to implement, non-destructive, relatively robust, according to the selection of the compartments and to their weighting, and associated with confidence indices that indicate possible weakness and biases and therefore the need for further field data acquisition.
منابع مشابه
Organic Carbon Metabolism and Carbonate Dynamics in a Mediterranean Seagrass (Posidonia oceanica) Meadow
We measured monthly dissolved oxygen (DO) changes in situ benthic incubations from March 2001 to October 2002 in a Posidonia oceanica meadow and unvegetated sediments of Magalluf Bay (Mallorca Island, Spain) to determine gross primary production (GPP), community respiration (R), and net community production (NCP). From June 2001 to October 2002, we also measured fluxes of dissolved inorganic ca...
متن کاملMeadows of the seagrass Posidonia oceanica are a significant source of organic matter for adjoining ecosystems
Stable isotopes of carbon and nitrogen were used to assess the relevance of 4 primary carbon sources (the macroalga Cystoseira balearica, decaying blades of the seagrass Posidonia oceanica, seagrass epiphytes and pelagic particulate organic matter [POM]) for consumers inhabiting 3 adjoining subtidal habitats in the Western Mediterranean: seagrass meadows, unvegetated sandy patches and the overl...
متن کاملDissolved organic matter release in a Posidonia oceanica meadow
We examined annual nutrient changes (nitrate, phosphate and ammonium) and the net dissolved organic carbon (DOC), nitrogen (DON) and phosphorus (DOP) release using in situ benthic incubations in a Posidonia oceanica meadow and in unvegetated sediments of Magalluf Bay (Mallorca Island, Spain) at monthly intervals. We also examined the role of the P. oceanica meadow in the C:N:P ratio transformat...
متن کاملResponse of the non-indigenous Caulerpa racemosa ̊ (Forsskal) J. Agardh to the native seagrass Posidonia oceanica (L.) Delile: effect of density of shoots and orientation of edges of meadows
Caulerpa racemosa is a tropical green alga introduced into the Mediterranean as an immigrant from the Red Sea which has successfully fast-spread in the south-eastern and in the north-western part of the basin. C. racemosa occurs mostly in shallow but also in deep subtidal habitats colonising hard and soft substrata where turfs, erect algae and even seagrasses are present with the potential to p...
متن کاملThresholds of irradiance for seagrass Posidonia oceanica meadow metabolism
Meadows of the endemic seagrass Posidonia oceanica are threatened in the Mediterranean due to a general deterioration of the light environment that becomes critical when light irradiance is insufficient to meet the carbon requirements of the system. Here, we conduct a 3 wk, in situ shading experiment (8 levels plus controls) to determine the threshold of irradiance for balanced metabolism in a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014